[백준] 1275번 - 커피숍2 [Java][C++]
[백준] 1275번 - 커피숍2 [Java][C++]
1. 문제 풀이
주어진 구간의 합을 반복적으로 구하고, 특정 값도 변경할 수 있는 상황으로 세그먼트 트리 또는 펜윅 트리를 활용하면 해결할 수 있다. $x > y$ 인 입력이 있음에 주의해야 한다.
2. 코드
1. 세그먼트 트리 [Java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import java.io.*;
import java.util.*;
public class Main {
static class SegmentTree {
int n;
long[] tree;
public SegmentTree(int[] arr) {
this.n = arr.length - 1;
this.tree = new long[4 * n];
init(arr, 1, 1, n);
}
void init(int[] arr, int node, int start, int end) {
if (start == end) {
tree[node] = arr[start];
return;
}
int mid = (start + end) / 2;
init(arr, node * 2, start, mid);
init(arr, node * 2 + 1, mid + 1, end);
tree[node] = tree[node * 2] + tree[node * 2 + 1];
}
void update(int idx, int value) {
update(1, 1, n, idx, value);
}
void update(int node, int start, int end, int idx, int value) {
if (start == end) {
tree[node] = value;
return;
}
int mid = (start + end) / 2;
if (idx <= mid) {
update(node * 2, start, mid, idx, value);
} else {
update(node * 2 + 1, mid + 1, end, idx, value);
}
tree[node] = tree[node * 2] + tree[node * 2 + 1];
}
long querySum(int left, int right) {
return querySum(1, 1, n, left, right);
}
long querySum(int node, int start, int end, int left, int right) {
if (left > end || right < start) return 0;
if (left <= start && end <= right) return tree[node];
int mid = (start + end) / 2;
long leftSum = querySum(node * 2, start, mid, left, right);
long rightSum = querySum(node * 2 + 1, mid + 1, end, left, right);
return leftSum + rightSum;
}
}
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringBuilder sb = new StringBuilder();
StringTokenizer st = new StringTokenizer(br.readLine());
int N = Integer.parseInt(st.nextToken());
int Q = Integer.parseInt(st.nextToken());
int[] arr = new int[1 + N];
st = new StringTokenizer(br.readLine());
for (int i = 1; i <= N; i++) {
arr[i] = Integer.parseInt(st.nextToken());
}
SegmentTree tree = new SegmentTree(arr);
for (int i = 0; i < Q; i++) {
st = new StringTokenizer(br.readLine());
int x = Integer.parseInt(st.nextToken());
int y = Integer.parseInt(st.nextToken());
int a = Integer.parseInt(st.nextToken());
int b = Integer.parseInt(st.nextToken());
sb.append(tree.querySum(Math.min(x, y), Math.max(x, y))).append("\n");
tree.update(a, b);
}
System.out.println(sb);
}
}
2. 펜윅 트리 [Java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import java.io.*;
import java.util.*;
public class Main {
static class FenwickTree {
int n;
long[] tree;
public FenwickTree(int n) {
this.n = n;
tree = new long[1 + n];
}
void update(int idx, long delta) {
while (idx <= n) {
tree[idx] += delta;
idx += idx & -idx;
}
}
long sum(int idx) {
long res = 0;
while (idx > 0) {
res += tree[idx];
idx -= idx & -idx;
}
return res;
}
long sum(int left, int right) {
return sum(right) - sum(left - 1);
}
}
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringBuilder sb = new StringBuilder();
StringTokenizer st = new StringTokenizer(br.readLine());
int N = Integer.parseInt(st.nextToken());
int Q = Integer.parseInt(st.nextToken());
int[] arr = new int[1 + N];
FenwickTree tree = new FenwickTree(N);
st = new StringTokenizer(br.readLine());
for (int i = 1; i <= N; i++) {
arr[i] = Integer.parseInt(st.nextToken());
tree.update(i, arr[i]);
}
for (int i = 0; i < Q; i++) {
st = new StringTokenizer(br.readLine());
int x = Integer.parseInt(st.nextToken());
int y = Integer.parseInt(st.nextToken());
int a = Integer.parseInt(st.nextToken());
int b = Integer.parseInt(st.nextToken());
sb.append(tree.sum(Math.min(x, y), Math.max(x, y))).append("\n");
tree.update(a, (long) b - arr[a]);
arr[a] = b;
}
System.out.println(sb);
}
}
3. 세그먼트 트리 [C++]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#include <bits/stdc++.h>
using namespace std;
struct SegTree {
int n;
vector<long long> tree;
SegTree(int n) : n(n), tree(4 * n) {
}
void init(const vector<int>& arr, int node, int start, int end) {
if (start == end) {
tree[node] = arr[start];
return;
}
int mid = (start + end) / 2;
init(arr, node * 2, start, mid);
init(arr, node * 2 + 1, mid + 1, end);
tree[node] = tree[node * 2] + tree[node * 2 + 1];
}
void update(int node, int start, int end, int idx, int value) {
if (start == end) {
tree[node] = value;
return;
}
int mid = (start + end) / 2;
if (idx <= mid) {
update(node * 2, start, mid, idx, value);
} else {
update(node * 2 + 1, mid + 1, end, idx, value);
}
tree[node] = tree[node * 2] + tree[node * 2 + 1];
}
long long querySum(int node, int start, int end, int left, int right) {
if (left > end || right < start) return 0;
if (left <= start && end <= right) return tree[node];
int mid = (start + end) / 2;
long long leftSum = querySum(node * 2, start, mid, left, right);
long long rightSum = querySum(node * 2 + 1, mid + 1, end, left, right);
return leftSum + rightSum;
}
};
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n, q;
cin >> n >> q;
vector<int> v(n);
for (int& x : v) cin >> x;
SegTree tree(n);
tree.init(v, 1, 0, n - 1);
for (int i = 0; i < q; i++) {
int x, y, a, b;
cin >> x >> y >> a >> b;
cout << tree.querySum(1, 0, n - 1, min(x, y) - 1, max(x, y) - 1) << '\n';
tree.update(1, 0, n - 1, a - 1, b);
}
}
4. 펜윅 트리 [C++]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#include <bits/stdc++.h>
using namespace std;
struct Fenwick {
int n;
vector<long long> tree;
Fenwick(int n) : n(n), tree(1 + n) {
}
void add(int idx, long long delta) {
while (idx <= n) {
tree[idx] += delta;
idx += idx & -idx;
}
}
long long query(int idx) {
long long res = 0;
while (idx > 0) {
res += tree[idx];
idx -= idx & -idx;
}
return res;
}
long long query(int left, int right) {
return query(right) - query(left - 1);
}
};
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n, q;
cin >> n >> q;
vector<int> v(1 + n);
Fenwick tree(n);
for (int i = 1; i <= n; i++) {
cin >> v[i];
tree.add(i, v[i]);
}
for (int i = 0; i < q; i++) {
int x, y, a, b;
cin >> x >> y >> a >> b;
cout << tree.query(min(x, y), max(x, y)) << '\n';
tree.add(a, (long long)b - v[a]);
v[a] = b;
}
}
3. 풀이 정보
1. 세그먼트 트리 [Java]
| 언어 | 시간 | 메모리 | 코드 길이 |
|---|---|---|---|
| Java 11 | 772 ms | 84084 KB | 2874 B |
2. 펜윅 트리 [Java]
| 언어 | 시간 | 메모리 | 코드 길이 |
|---|---|---|---|
| Java 11 | 648 ms | 77504 KB | 1854 B |
3. 세그먼트 트리 [C++]
| 언어 | 시간 | 메모리 | 코드 길이 |
|---|---|---|---|
| C++ 17 | 100 ms | 5548 KB | 1800 B |
4. 펜윅 트리 [C++]
| 언어 | 시간 | 메모리 | 코드 길이 |
|---|---|---|---|
| C++ 17 | 72 ms | 3196 KB | 1041 B |
This post is licensed under CC BY 4.0 by the author.