Post

[백준] 12837번 - 가계부 (Hard) [Java][C++]

[백준] 12837번 - 가계부 (Hard) [Java][C++]

문제 링크


1. 문제 풀이

월곡이가 살아온 날 $N$ 이 최대 $10^6$, 특정 일에 가계부를 수정하거나 특정 구간의 합계를 구하는 쿼리의 수 $Q$ 가 최대 $10^6$ 인 문제로 구간 합을 효율적으로 구할 수 있는 세그먼트 트리 또는 펜윅 트리를 활용하면 해결할 수 있다. 1번 쿼리의 경우 점 갱신을 할 때, 새로운 값으로 변경하는게 아니라 새로운 값을 더하는 것임에 주의해야 한다.


2. 코드

1. 세그먼트 트리 [Java]

세그먼트 트리의 update 메서드에서 tree[node] += value 로 점 갱신을 수행했다.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import java.io.*;
import java.util.*;

public class Main {

    static class SegmentTree {
        int n;
        long[] tree;

        public SegmentTree(int n) {
            this.n = n;
            this.tree = new long[4 * n];
        }

        void update(int idx, int value) {
            update(1, 1, n, idx, value);
        }

        void update(int node, int start, int end, int idx, int value) {
            if (start == end) {
                tree[node] += value;
                return;
            }

            int mid = (start + end) / 2;

            if (idx <= mid) {
                update(node * 2, start, mid, idx, value);
            } else {
                update(node * 2 + 1, mid + 1, end, idx, value);
            }
            tree[node] = tree[node * 2] + tree[node * 2 + 1];
        }

        long querySum(int left, int right) {
            return querySum(1, 1, n, left, right);
        }

        long querySum(int node, int start, int end, int left, int right) {
            if (left > end || right < start) return 0;
            if (left <= start && end <= right) return tree[node];

            int mid = (start + end) / 2;

            long leftSum = querySum(node * 2, start, mid, left, right);
            long rightSum = querySum(node * 2 + 1, mid + 1, end, left, right);
            return leftSum + rightSum;
        }
    }

    public static void main(String[] args) throws IOException {
        BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
        StringBuilder sb = new StringBuilder();
        StringTokenizer st = new StringTokenizer(br.readLine());

        int N = Integer.parseInt(st.nextToken());
        int Q = Integer.parseInt(st.nextToken());

        SegmentTree tree = new SegmentTree(N);
        for (int i = 0; i < Q; i++) {
            st = new StringTokenizer(br.readLine());
            int t = Integer.parseInt(st.nextToken());
            int a = Integer.parseInt(st.nextToken());
            int b = Integer.parseInt(st.nextToken());

            if (t == 1) {
                tree.update(a, b);
            } else {
                sb.append(tree.querySum(a, b)).append("\n");
            }
        }

        System.out.println(sb);
    }
}

2. 펜윅 트리 [Java]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import java.io.*;
import java.util.*;

public class Main {

    static class FenwickTree {
        int n;
        long[] tree;

        public FenwickTree(int n) {
            this.n = n;
            tree = new long[1 + n];
        }

        void update(int idx, long delta) {
            while (idx <= n) {
                tree[idx] += delta;
                idx += idx & -idx;
            }
        }

        long sum(int idx) {
            long res = 0;
            while (idx > 0) {
                res += tree[idx];
                idx -= idx & -idx;
            }
            return res;
        }

        long sum(int left, int right) {
            return sum(right) - sum(left - 1);
        }
    }

    public static void main(String[] args) throws IOException {
        BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
        StringBuilder sb = new StringBuilder();
        StringTokenizer st = new StringTokenizer(br.readLine());

        int N = Integer.parseInt(st.nextToken());
        int Q = Integer.parseInt(st.nextToken());

        FenwickTree tree = new FenwickTree(N);
        for (int i = 0; i < Q; i++) {
            st = new StringTokenizer(br.readLine());
            int t = Integer.parseInt(st.nextToken());
            int a = Integer.parseInt(st.nextToken());
            int b = Integer.parseInt(st.nextToken());

            if (t == 1) {
                tree.update(a, b);
            } else {
                sb.append(tree.sum(a, b)).append("\n");
            }
        }

        System.out.println(sb);
    }
}

3. 세그먼트 트리 [C++]

세그먼트 트리의 update 메서드에서 tree[node] += value 로 점 갱신을 수행했다.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#include <bits/stdc++.h>
using namespace std;

struct SegTree {
    int n;
    vector<long long> tree;

    SegTree(int n) : n(n), tree(4 * n) {
    }

    void update(int node, int start, int end, int idx, int value) {
        if (start == end) {
            tree[node] += value;
            return;
        }

        int mid = (start + end) / 2;

        if (idx <= mid) {
            update(node * 2, start, mid, idx, value);
        } else {
            update(node * 2 + 1, mid + 1, end, idx, value);
        }
        tree[node] = tree[node * 2] + tree[node * 2 + 1];
    }

    long long querySum(int node, int start, int end, int left, int right) {
        if (left > end || right < start) return 0;
        if (left <= start && end <= right) return tree[node];

        int mid = (start + end) / 2;

        long long leftSum = querySum(node * 2, start, mid, left, right);
        long long rightSum = querySum(node * 2 + 1, mid + 1, end, left, right);
        return leftSum + rightSum;
    }
};

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);

    int n, q;
    cin >> n >> q;

    SegTree tree(n);
    for (int i = 0; i < q; i++) {
        int t, a, b;
        cin >> t >> a >> b;

        if (t == 1) {
            tree.update(1, 0, n - 1, a - 1, b);
        } else {
            cout << tree.querySum(1, 0, n - 1, a - 1, b - 1) << '\n';
        }
    }
}

4. 펜윅 트리 [C++]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#include <bits/stdc++.h>
using namespace std;

struct Fenwick {
    int n;
    vector<long long> tree;

    Fenwick(int n) : n(n), tree(1 + n) {
    }

    void add(int idx, long long delta) {
        while (idx <= n) {
            tree[idx] += delta;
            idx += idx & -idx;
        }
    }

    long long query(int idx) {
        long long res = 0;
        while (idx > 0) {
            res += tree[idx];
            idx -= idx & -idx;
        }
        return res;
    }

    long long query(int left, int right) {
        return query(right) - query(left - 1);
    }
};

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);

    int n, q;
    cin >> n >> q;

    Fenwick tree(n);
    for (int i = 0; i < q; i++) {
        int t, a, b;
        cin >> t >> a >> b;

        if (t == 1) {
            tree.add(a, b);
        } else {
            cout << tree.query(a, b) << '\n';
        }
    }
}

3. 풀이 정보

1. 세그먼트 트리 [Java]

언어시간메모리코드 길이
Java 11504 ms77468 KB2239 B

2. 펜윅 트리 [Java]

언어시간메모리코드 길이
Java 11460 ms54524 KB1576 B

3. 세그먼트 트리 [C++]

언어시간메모리코드 길이
C++ 1784 ms33276 KB1391 B

4. 펜윅 트리 [C++]

언어시간메모리코드 길이
C++ 1740 ms9836 KB921 B

This post is licensed under CC BY 4.0 by the author.